IN POWER Online Workshop

Date: 27 October 2020

Time: 09:00 – 14:00 (CET)

Particles as heat transfer fluid and storage material in concentrating solar heat and power production. The Next-CSP Project

Project coordinator: Gilles Flamant, CNRS

<u>www.next-csp.eu</u> Gilles.Flamant@promes.cnrs.fr

Content

- Objectives
- Concept
- Critical components
- Prototype development
- Scaling up for a peaker plant

Objectives

- Develop an original solar technology able to strengthen European CSP industry.
- Increase the power block efficiency by 20% with respect to the state-of-the-art (particles heated at 750°C and more)
- Offer a dispatchable production through the cheap storage of hot particles.
- Demonstrate the technology at prototype-scale.
- Identify the barriers to large scale deployment of the technology.
- Estimate cost and cost reduction potential.

The critical components

- The solar receiver
- The heat exchanger
- The particle conveying system (at large scale)
- The thermodynamic cycle

The solar receiver

- An upward flow of small size fluidized particles is created in tubes irradiated by concentrated solar energy,
- The particles (~50μm) are heated up to 750-800°C and then stored.

30 kW_{th} 1m-long single tube solar test

3MW_{th} 3m-long solar receiver (40 tubes)

The solar receiver

Integration of the solar receiver at Themis solar tower

<mark>rec</mark>eiver

The heat exchanger

Air 🗖

- Multi-stage fluidized bed concept

	1
	2
	ettic
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	

Approximately 15 stages for $30^{\circ}C \Delta T$ And 9 stages for 50°C ΔT

The thermodynamic cycle

Two options: combined cycle and sCO₂ cycle

Combined cycle with a double reheat GT & three stages steam turbine with particle inlet at 819°C

η_c ~ 49%

Grant agreement N° 727762 – Next-CSP: High Temperature concentrated solar thermal power plant with particle receiver and direct thermal storage

Source: EDF

Overall system simulation

Integration at the Themis solar tower focal area

Component manufacturing

Heat exchanger

Components delivery and assembly

The gas turbine integration

Commissioning

Hopefully next November

Scaling up for a 150 MWe peaker Production during high consumption plant (peak load) / cost hours (evening and early night)

Scaling up for a peaker plant

Main issue: limited length of the receiver tubes → an array of tower modules ~ 50MW_{th} each

→ Particle conveying technology

Scaling up for a peaker plant

Particle conveying technology

Vertical: bucket elevators

Number of elevators in parallel (mass flow) and in series (tower height) still to be defined according to chosen manufacturer

Horizontal: drag conveyors instead of apron conveyors

Approx. 4 km of single mass flow (~220 kg/s) drag conveyors. thermal losses ~5%

Scaling up for a peaker plant

LCOE calculation, in progress

Location Ouarzazate, Morocco

For a peaker plant (~20% capacity factor) with combined cycle

First estimate ~ 13-14 c€/kWh

For a base load plant (~70% capacity factor) with sCO₂ cycle

First estimate ~ 5 c€/kWh

This project has received funding from the EU Horizon 2020 Framework Programme for Research and Innovation under grant agreement no 727762

