

High-performance Stellio heliostat for high temperature application

Thomas Keck, sbp sonne gmbh

Contents

- 1. Introduction
- 2. Heliostat quality parameters
- 3. Optical quality improvements
- 4. Tracking quality improvements
- 5. Techno-economic analysis
- 6. Conclusion

Overview

1. Introduction

Motivation for high performance heliostats

High temperature processes mean:

- → High surface temperatures of receivers/absorbers
- → Increased thermal losses (IR radiation goes with T⁴)

System design requirements:

- Cavity receivers!
- Apertures: as small as possible
- Heliostats: high optical quality (small beam diameter), low tracking errors

next-CSP (1)

EU funded project:

- Fluidized particle-in-tube receiver for 750 °C
- Particles used as thermal storage
- 3 MW_{th} prototype receiver (Whittaker Engineering) at Themis plant in Odeillo/France, to be completed in 2020, operated by CNRS

next-CSP (2)

Further presentations and posters on next-CSP:

- A. Le Gal et al., "MW-scale prototype of the fluidized particle-in-tube solar receiver. Design, control and first experiments at Themis tower.", presentation given in WED-1A, 11:10
- B. Grange et al., "Simulation of the Next-CSP solar loop including a hybrid gas turbine", presentation given in **WED-2D**, **15:50**
- B. Grange et al., "Comparison of simulated and measured flux distributions at the aperture of the Next-CSP solar receiver", presentation given in **WED-1C**, **11:10**
- F. Siros et al., "Next-CSP Concept with Particle Receiver Applied to a 150 MWe Solar Tower", presentation given in **FRI-1C**, **10:50**
- Sahuquet, G., "Particle Flow Stability in Tubular Fluidized Bed Solar Receivers", 26th SolarPACES conference, 2020 – poster session Receivers Tues 18:15
- K. Whittaker, Keith Watt, "Manufacturing of the Main Components of the Next-CSP Project Solar Pilot Plant", poster session Advanced Materials Mon 16:00

Partially installed receiver at Themis

Stellio heliostat

Stellio: developed for large plants, commercially available Selected for Hami Solar Tower/China (under construction)

Main characteristics:

- Net reflective surface: 48.5 m²
- Novel kinematics with inclined axes (slope drive)
- Two linear actuators
- Reflector substructure with high stiffness
- High optical quality

www.stellio.solar

2. Heliostat quality parameters

• Slope error:

$$\sigma_{beam} = 2 \times \sigma_{slope}$$

$$\sigma_{slope,2D} = \sqrt{\sigma_{slope,x}^2 + \sigma_{slope,y}^2}$$

 \rightarrow Stellio: $\sigma_{slope,2D}$ (SD_{tot}) = 1.5 mrad

• Tracking error:

$$\sigma_{pointing} = 2 \times \sigma_{tracking}$$

$$\sigma_{tracking,2D} = \sqrt{\sigma_{tracking,x}^2 + \sigma_{tracking,y}^2}$$

 \rightarrow Stellio: $\sigma_{tracking,1D}$ = 0.6 mrad

Heliostat quality parameters

3. Optical quality improvements

Potential improvements

Measures	Potential	Engineering effort	Cost increase
Increase of purlin stiffness	++	medium	low
Increase of cantilever arm stiffness	+	medium	low
Increase number of mirror supporting points	+++	high	medium
Modification of supporting point details	+	medium	medium
Increase facet stiffness	+++	high	high

Identify improvement measures for optical quality

Potential improvements

Measures	Potential	Engineering effort	Cost increase
Increase of purlin stiffness	++	medium	low
Increase of cantilever arm stiffness	+	medium	low
Increase number of mirror supporting points	+++	high	medium
Modification of supporting point details	+	medium	medium
Increase facet stiffness	+++	high	high

Standard Stellio slope errors

Example of slope errors from Hami field: heliostat #6813, Aug. 2020 $SD_{tot} = 1.27 \; mrad \;$

Standard Stellio mirror supporting

Facet with 5 purlins and 13 supports

Stellio mirror support structure

Mirror deformations under deadweight

Facet with 5 purlins and 13 supports

Facet with 6 purlins and 17 supports

Cost impact

Extra cost for additional purlins and mirror supports, incl. assembly:

Approx. 2 % of heliostat cost (wo. foundations)

4. Tracking quality improvements

Potential improvements

Measures	Potential	Engineering effort	Cost increase
Reduction of actuator backlash	++	medium	medium
Reduce tolerances of spindle pitch	+	low	medium
Increase actuator stiffness (ball screw)	+	medium	high
Increase limit switch precision	+	low	low
Improve actuator corrections by control (temperature, normal force, pitch)	+	high	zero
Increase pylon head stiffness	+++	medium	low
Refinement of heliostat calibration	++	high	low

Tracking quality improvements

Identify improvement measures for tracking quality

Potential improvements

Measures	Potential	Engineering effort	Cost increase
Reduction of actuator backlash	++	medium	medium
Reduce tolerances of spindle pitch	+	low	medium
Increase actuator stiffness (ball screw)	+	medium	high
Increase limit switch precision	+	low	low
Improve actuator corrections by control (temperature, normal force, pitch)	+	high	zero
Increase pylon head stiffness	+++	medium	low
Refinement of heliostat calibration	++	high	low

Tracking quality improvements

Linear actuators (1)

ACME spindle and nut

- Trapeze groove, plastic nut
- Sliding contact
- Low efficiency

Ball screw spindle and nut

- Circular groove, nut with steel balls
- Rolling contact
- High efficiency

Linear actuators (2)

ACME spindle and nut

- Backlash temperature dependent, subject to wear
 - → 1.0 mm avg. over service life*
- Medium stiffness, considerable loss in plastic nut

Ball screw spindle and nut

- Backlash almost constant, little wear
 - → 0.3 mm avg. over service life*
- High stiffness, all parts from metal
 → 2-3 fold of ACME

* incl. trunnion and rod end bearing play

Tracking quality improvements

Increased stiffness of pylon head

- Modified geometry + optimized material thickness → increased stiffness
- Mass remains constant

Increased stiffness of pylon head

Improved calibration

1. Beam Characterization System (BCS):

Target/camera based → novel calibration solutions, e.g. drone based

Advantages:

- independent of sun, clouds and target availability
- potentially better accuracy
- high calibration frequency.
- → System developed together with CSP Services and others in HelioPoint project (W. Jessen et al.: A Two-Stage Method for Measuring the Heliostat Offset, Poster session Measurement Systems, Wed 18:45

2. Algorithm for tracking error corrections:

Potential for improvement, can't yet be quantified

→ Estimated uncertainty of measured beam pointing reduced by half

Tracking error improvements

Combined tracking error

Total tracking error is combined from:

- backlash
- drive stiffness
- pylon/foundation/structure stiffness
- calibration/tracking algorithm accuracy

Dead weight induced errors are compensated to a good part but wind effects remain.

All errors are overlaid by RMS.

→ Reduction from 0.6 to 0.4 mrad is expected (1D)

Tracking error improvements

Cost impact

• Ball screw actuator cost: approx. 30-40 % higher than ACME

• Pylon head improvement cost: ±0

Precise calibration cost: ±0

→ approx. 5 % increase of heliostat cost (wo. foundations)

Tracking error improvements

5. Techno-economic analysis

LCoE analysis by EdF

- Simple model, O & M cost neglected since these are same for all options
- Discount rate: 4 %, lifespan: 25 years
- Sample power plant assumed, using next-CSP technology:
 - Peaker plant, 150 MW_{el}
 - CSP full load: 5 hrs
 - Daily thermal / electric energy: 1.6 GWh / 0.75 GWh
- Specific LCoE changes:
 - +1 M€ in CAPEX results in LCoE change of +0.28 €/MWh_{el}
 - +1 MW_{el} in net output results in LCoE change of -0.63 €/MWh_{el}

Techno-economic analysis

LCoE analysis results

Reference sy	/stem		
Receiver outlet power		343	MW_{th}
Plant net electric power		150	MW _{el}
CAPEX		340	M€
LCoE		95	€/MWh _{el}

High perform	ance Stellio				
		CAPEX increase	Performance gain	LCoE change	
Improvement r	measures	(M€)	(MW_{th})	(€/MWh)	~1 %
Slope error		1.55	4.93	-0.93	
Tracking error		4.16	5.78	-0.44	~0.5 9
Combined		5.71	10.71	-1.37	
	Percental			-1.44%	

Tracking error improvement			
	LCoE change		
Improvement measures	(€/MWh _{el})		
Ball screw actuator	0.02		
Improved pylon head	-0.34		
Improved calibration	-0.33		

Techno-economic analysis

6. Conclusions

- Overall, LCoE reduction of approx. 1.5 %
- Major gain by increased number of mirror supports

Notes:

- Conceptual study, no/little optimization
- Simplified calculations were applied
- → High performance Stellio provides some economic advantage for high temperature processes

Conclusions

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 727762, project acronym next-CSP.

Horizon 2020 European Union funding for Research & Innovation

Acknowledgements

Thank you very much for your attention!