

COMESSA

COnstruction Mecanique Schiltigheim-Strasbourg SA

Outline

- Presentation of the Next-CSP Project
- Description of the Solar Receiver
- Methodology
 - TABU Search/Solstice
 - Heat Flux Measurement
- Results & Perspectives

Next-CSP project

- Operation of the system
 - Dispenser
 - Tubular receiver
 - Hot and cold storage
 - Air heater
 - Bucket elevator
 - Hybrid gas turbine

Next-CSP project

- Installation at the Themis site
 - Tower of 104 m
 - 107 heliostats of 54 m² each
 - System between 83 m and 92 m height

- Major challenges
 - Develop a solar receiver addle to heat particles upt to 7000°C
 - Design and test a two-tank particle thermal energy storage and a particle-to-pressurized air heat exchanger.
 - Integrate a hybrid gas turbine with the solar loop.
- Major barriers
 - Heat transfer limitation
 - High temperature matterials
 - Particle conveying and circulation in a close loop
 - Control of the complete system

Aiming point strategy on the Next-CSP receiver

Description

- Tubular receiver (SS 310S) with back refractory panel
- 40 tubes 1 m bare (lower part) and 2 m finned
- Divergent half cavity made of refractory panels
- Refractory panels → ALSIFLEX®-1260
- Angles of the cavity panels comes from position of most Eastern, Western and Northern heliostats
 - → Complex geometry and optical paths

Aiming point strategy has to take into account the complex geometry

Methodology **Simulation Tools**

TABU search coupled with convolution-projection optical model Unizar

Methodology TABU Search

 Definition of objective normalized flux distribution, # of aiming points, cost function and constraint

Objective normalized flux distribution

Horizontally ► Gaussian distribution

 $\phi_{inc} \le 500 \text{ kW/m}^2$

Number of aiming points = 25

3 m					
Х	х	х	х	х	
Х	Х	Х	Х	Х	
Х	х	х	х	х	1 60 cm
Х	х	х	х	х	↓ 60 cm
Х	Х	х	Х	х	

Cost function

Root-Mean-Square Deviation

Constraint

Not more than 30% of flux loss relative to base case

Methodology TABU Search

• Algorithm

Methodology TABU Search

Typical results

Methodology *Solstice*

- Presentation of Solstice
 - New open-source ray-tracing software developed by the CNRS-PROMES laboratory and Meso-Star SAS
 - YAML (Yet Another Markup Language) language to create geometries
 - Import CAD model → Ray's path in complex geometry
 - Access to performance of the solar field

Methodology *Solstice*

• Flux distribution enthadacaeceingebar plane with a virtual target

- Consists in:
 - CMOS camera
 - Heat flux sensor
 - Scanning bar
 - → Measure the heat flux distribution at the aperture of the receiver

CMOS camera installed in the solar field

- Basler, sensor CMOS Sony IMX174, 1920*1200, monochrome
- High picture frame rate (up to 163 FPS)
- 16-bit dynamic
- Pixel of 2.34 x 2.34 mm

Heat flux sensor installed on the scanning bar

- Heat flux micro-sensor model HFM 6
- 17 to 300 μs response time
- Thermopile 4 mm in diameter, covered with Pyromark® film $\rightarrow \alpha$ = 94%
- Accuracy of ± 3%
- High-speed A/D converter and data acquisition system ADDI DATA MSX-E3011

View of the scanning bar from the CMOS camera

- Data processing
 - Flat-field correction

$$I_{net} = \frac{I_{raw} - I_{black}}{I_{flat} - I_{black}}$$

Peak Signal to Noise Ratio (PSNR)

$$PSNR = 10log_{10} \left(\frac{1}{rms(I_{raw} - I_{net})} \right)$$

Background subtracted from each "net" image

$$I_{corr} = I_{net} - I_{back}$$

- Data processing
 - Spatial derivative approach to detect the bar

$$I_{corr-n} = 2\frac{I_{corr} - Min_{pix-all}}{Max_{pix-all} - Min_{pix-all}} - 1$$

$$I_{grad-x} = grad(I_{corr-n})$$

$$I_{grad-x-n} = 2 \frac{I_{grad-x} - Min_{grad-x-all}}{Max_{grad-x-all} - Min_{grad-x-all}} - 1$$

$$Mean_{grad-x-n} = mean_y(I_{grad-x-n})$$

- Data processing
 - Spatial derivative approach to detect the bar

- Data processing
 - Mapping grey value

$$MeanValPixel(p) = \frac{1}{n} \sum_{i=1}^{n} ValPixel_{p}(i)$$

$$STD(p) = \frac{1}{n} \sqrt{\sum_{i=1}^{n} \left[ValPixel_{p}(i) - MeanValPixel(p) \right]^{2}}$$

 ValPixel_p(i) that deviate from the average by more than twice the STD(p) are rejected

$$MeanValPixel(p) - 2 \times STD(p) < ValPixel_p(i) < MeanValPixel(p) + 2 \times STD(p)$$

- Data processing
 - Calibration

$$\begin{cases} X_{flux}(n) = X_{max}(n) + dF_x \\ Y_{flux} = dF_y \end{cases}$$

- $ValPixel(x_n)=ValPixel(X_{flux}(n),Y_{flux})$

- Power calculation:
$$P_{solar-in} = \sum_{cells} [Flux(cell_i) \times Area(cell_i)]$$

Results & Perspectives

Single Heliostat

Comparison with an APS with more heliostats when operating the solar loop

Thank you for your attention Any Questions?

- This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 727762, project acronym NEXT-CSP.
- This work was supported by the French "Investments for the future" program managed by the National Agency for Research, under contract ANR-10-EQPX-49-SOCRATE (Equipex SOCRATE).

