
MW-scale prototype of the fluidized particles-in-tube solar receiver.

Implementation, Design and Control of the setup at Themis tower.

SolarPACES conference

September 30, 2020 On-line event

A. Le Gal, B. Grange, G. Flamant

PROMES-CNRS

- Presentation of the Next-CSP project
- Technology concept
- MW-scale design
- Human Machine Interface
- Loop control

Next-CSP project

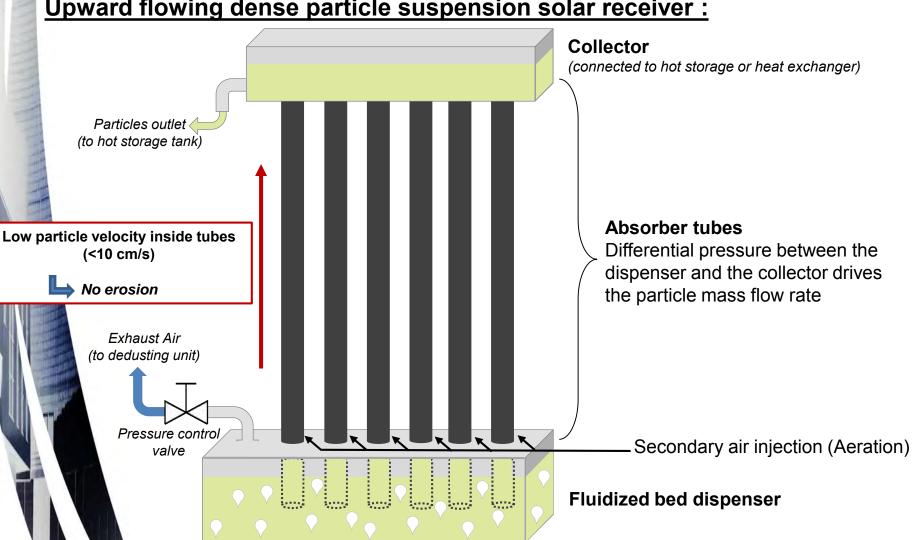
10 partners, one objective :

Improving the reliability and performance of concentrated solar power plants through the development and integration of a new technology based on the use of fluidized particles in tube as heat transfer fluid and storage medium. (TRL 5)

Next-CSP project

Themis solar facility - Targassonne

1MW Solar furnace - Odeillo

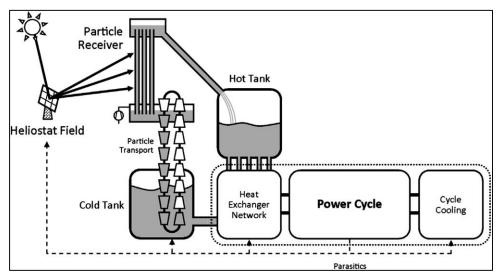


Technology concept

Upward flowing dense particle suspension solar receiver :

Fluidized bed air feeding

Technology concept



Advantages of this concept:

- Possibility to reach higher temperature than conventional heat transfer fluids (temperature up to 750°C could considerably improve the thermodynamic cycle efficiency) → Combined cycle, supercritical CO₂ cycle
- Direct storage of heat through the heat transfer fluid
- No freezing problems
- Good scalability of the concept (multi-tubular solar receiver)

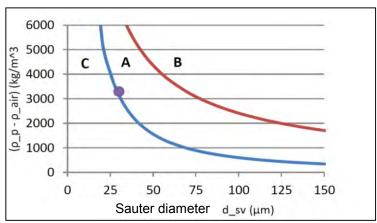
Drawback:

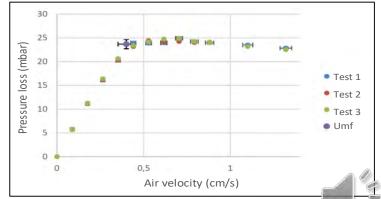
Limited heat exchange between particles and the receiver wall surface

Generic layout of the dense particle suspension power plant. [1]

Technology concept

Olivine particles:

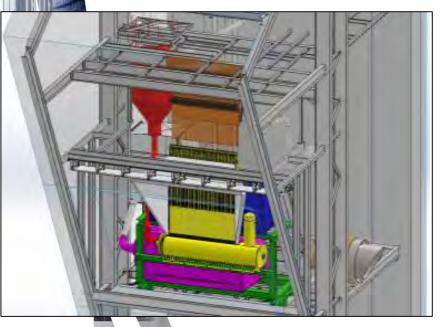

Particle	Composition	Mean diameter (d ₅₀) - μm	Sauter diameter (d ₃₂) - μm	Density - kg/m³	Bulk conductivity at 800°C – W/mK
Olivine	MgO 49.5%, SiO ₂ 42%, Fe ₂ O ₃ 7.5%	59	30	3300	0.56

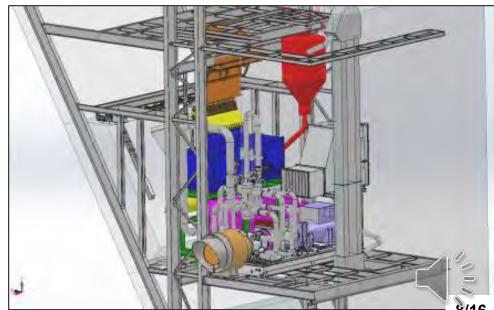


- Selected Olivine particles are part of the group A in the Geldart classification.
- The minimum air velocity to fluidized the particles is U_{mf}= 0.40 cm/s

Geldart classification of the selected olivine particles

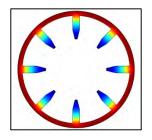
Determination of the olivine particles minimum fluidization velocity (U_{mf}) .

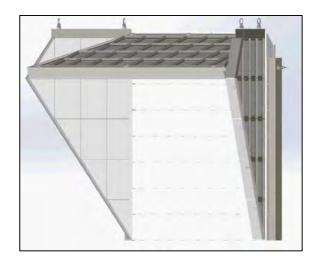

REF: Kang Q. et al., Particles in a circulation loop for solar energy capture and storage, Particuology, 43:149-156, 2019



MW-scale design

- A 3 MW_{th} solar receiver has been assembled at the top of the THEMIS solar tower to demonstrate this technology in a relevant environment.
- A storage system composed of a cold and a hot tank
- A multi-stage heat exchanger
- An innovative 1.2 MW_{el} hybrid turbine (*OPRA turbine Solar/gasoil*)
- A 10 meters high bucket elevator

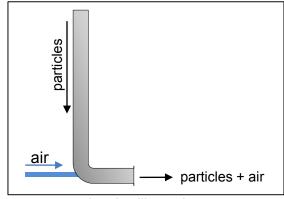



The solar receiver

- A dispenser to fluidize particles With homogeneous air injection through drilled tubes, (low air velocity $U_{mf} = 0.4$ cm/s \rightarrow low air flow)
- 40 tubes with 8 fins to favour heat transfer (316 SS, 3-meters high)
- A refractive cavity to improve the receiver's thermal efficiency

- Fully equipped with 100 thermocouples (front/back surface, inside tubes & dispenser)
 - Differential pressure sensors to measure the pressure drop inside tubes, inside dispenser.

Heat storage


A cold storage tank

Level sensors to check the filling of the tank

Particle filling through a 10 meters high bucket elevator

a L-valve to empty the cold tank

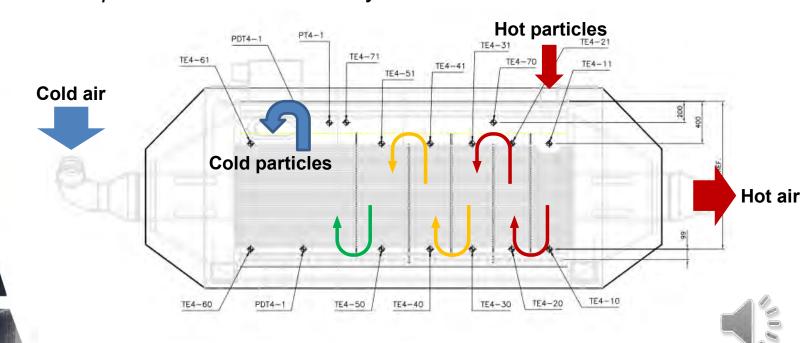
L-valve illustration

A hot storage insulated tank

Low airflow to fluidize particle inside tank to allow particle transfer to heat exchanger (via a L-valve)

Half an hour of storage capacity (~20 tons of particles)

Top view of the hot storage with receiver's tubes connexion 0/16



Heat exchanger

Fluidized particle/Air heat exchanger

- Hot particles from hot storage tank
- Compressed air from turbine compressor
- 6 stages
- 1200 tubes
- At the oultet particles are recovered by the bucket elevator

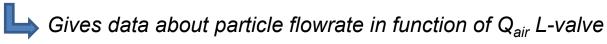
Hybrid turbine

- 1.2 MWel hybrid turbine
- Solar/Gasoil (first of it kind) OPRA development
- Connected to the heat exchanger with a fully automated control of the combusted gasoil flow in function of air temperature at the outlet of the heat exchanger

Control command

- Control/Command by using a Labview HMI
- What to control:
 - T_{max} receiver

 - $T_{\text{particles}}$ P_{sky} dispenser
 - $\Delta P_{dispenser}^{\text{f}}, \, \Delta P_{hot \, storage}, \, \Delta P_{heat \, exchanger}$
 - ΔP_{tubes}
- What to operate:
 - Fluidization air flowrates
 - Dispenser freeboard pressure
 - L-valves air injection



Loop control

How to measure particle flowrate?

- -1- Calibrate L-valves particle flowrates
 - for several Q_{air} L-valve, plot $\triangle P_{dispenser} = f(t)$ (follow the filling of the dispenser in function of time) (the height of the fluidized bed is directly correlated to the pressure drop of the bed)

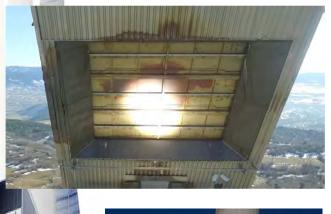
- -2- Establish a correlation between the particle flowrate and P_{sky} dispenser
 - Test plan of particles circulation through the receiver's tubes for different dispenser freeboard pressure (P_{sky}) .
 - Set Q_{air} L-valve to keep $\Delta P_{dispenser}$ constant (No emptying of the fluidized bed)
 - Plot $\dot{m}_{particle} = f(P_{sky})$

-3- Establish a correlation between Q_{air} L-valves and P_{sky} dispenser to maintain the dispenser filling stable

Program the control (enslavement) of Q_{air} L-valve in function of P_{sky}

Acknowledgements

- This project has received funding from the european Union's Horizon H2020 research and innovation programme under grant agreement No 727762, Next-CSP project
- The French "Investments for the future" program managed by the National Agency for Research under contracts ANR-10-EQPX-49 (SOCRATE) supported the facility.
 - The Occitanie French region funded the cold mockup.



Questions?

