

Integrated Solar Combined Cycle Using Particles as Heat Transfer Fluid and Thermal Energy Storage Medium for Flexible Electricity Dispatch

M. A. Reyes-Belmonte, M. Romero & J. González-Aguilar

Objectives

- Solar plant concept being investigated under NEXT-CSP project
- Dedicated modelling of Integrated Solar Combined Cycle (ISCC) pure-solar plant that uses particles as heat transfer fluid and storage medium
- Plant components optimization (solar field, receiver, Brayton topping cycle, Rankine bottoming cycle, particles-based heat exchangers network) to maximize ISCC efficiency (design-point conditions)
- Multi-tower solar plant arrangement for commercial scaling-up (150 MW_e)
- **Dispatch strategies** definition to maximize electricity power output (annual performance)

Plant Layout Description

- Solar particles receiver was designed to reach 825 °C
- Double-reheated Brayton & reheated Rankine cycles to maximize ISCC efficiency
- Dedicated design of particles-based heat exchanger network connecting solar loop & power cycle

i Mdea energy

Boundary conditions (design point)

Solar plant location	Ouarzazate, Morocco 30.9°N, 6.93°W	
Design DNI	900 W/m² @ noon 21 st March	
Heliostats area	49 m ² (Stellio heliostat)	
Aperture incident flux	2,000 kW/m ²	
Thermal power onto aperture	55 MW	
Particles maximum temperature (at receiver outlet)	825 °C	
Preferred commercial size (electrical power output)	150 MW _e	

Multi-tower (& solar fields) configuration is required to achieve designpoint dispatch power (150 MW_e – pure solar)

Boundary conditions (annual performance)

- Annual DNI (15-min based) from Ourzazate
- Typical electric grid demand curve from Mediterranean area

Plant Layout Description

- Multiple solar-fields & towers feeding single Combined Cycle Power Block
- Particles transportation system between multi-solar fields units & common particles

TES & heat exchangers network

Design-point optimization

Solar plant & receiver

Solar Field Sc		Solar	Receiver
Power incident on field	75.5 MW	Power onto aperture	55 MW
Number of heliostats	1731	Absorbed thermal	44 MW
Heliostats area	49 m ²	Thermal efficiency	79.4 %
Design day	noon 21 st March	Tubes height	7 m
Design DNI	900 W/m ²	Number of tubes	240
Tower optical height	110 m	Particles inlet temperature	606 °C
Aperture tilt angle	30°	Particles mass flow	165 kg/s
Aperture incident flux	2,000 kW/m ²	Receiver average flux	500 kW/m ²

Power cycle

Topping cycle		Bottoming cycle	
HP inlet pressure	14.3 bar	HP inlet pressure	160 bar
MP inlet pressure	6.1 bar	MP inlet pressure	20 bar
LP inlet pressure	2.5 bar	HP inlet temperature	585 °C
HP – MP – LP inlet temperature	800 °C	MP inlet temperature	575 °C

Particle-based heat exchanger network

Very regenerative configuration (double turbine reheating of the Brayton cycle) leading to reduced temperature difference across heat exchangers \rightarrow high particles mass flow

Particles-based heat exchanger network

Very regenerative configuration also leading to high temperature of "cold" particles sent back to the tanks and receiver \rightarrow higher particles receiver area and storage tanks capacity

Mass flow distribution:

- \mathbf{m}_{air} (HP hot DPS-HX) = \mathbf{m}_{air} (IP DPS-HX) = \mathbf{m}_{air} (LP DPS-HX) = \mathbf{m}_{air} (HP cold DPS-HX)
- \mathbf{m}_{DPS} (HP hot DPS-HX) $\approx \mathbf{m}_{\text{DPS}}$ (IP DPS-HX) $\approx \mathbf{m}_{\text{DPS}}$ (LP DPS-HX) $\approx \mathbf{3} \cdot \mathbf{m}_{\text{DPS}}$ (HP cold DPS-HX)

Strategy A

Constant power output (nominal power) from 17h – 22h

30 minutes ramp-up & ramp-down

Strategy B

Following grid demand during morning-peak (9h - 11h) and evening-peak (17h - 21h)

Thermal energy surplus to be stored as hot particles (tanks sizing)

Results Analysis: Daily Operation

Results analysis: Annual performance

Power block electricity output [MWe] 140 20 120 16 100 Turbine ramp-down hour [h] 80 12 **Turbine ramp-up** 60 8 40 4 20 **Strategy A** 0 0 50 100 150 200 250 300 350 Day

Particles stored at tanks (tons)

Maximum amount of particles stored during central months of the year and before power cycle operation (before 17 h) Electricity annual production (MWe)

 Winter months: not enough thermal power to dispatch 5 hours @ full load

Results analysis: Annual performance

Power block electricity output [MWe]

 Exceeding thermal power stored as hot particles by the end of the day (during those months when the solar resource is higher but the electricity demand is lower)

Results analysis: Annual performance

Conclusions

- Pure-solar Integrated Solar Combined Cycle (ISCC) optimized at design-point conditions
- 2 dispatch strategies analyzed:
 - Constant nominal power output (17h 22h)
 - Flexible dispatch power output to cover morning & evening peaks
- Thermal storage sizing largely depends on dispatching scenario, so that a caseby-case analysis (dispatching, resource, demand) is necessary
- Solar-to-electricity efficiency is not a good figure when similar times of full load plant operation and turbine ramp up/shut off penalizes solar-to-electricity efficiency.
- More detailed analysis on operation modes based on dynamic modelling of transients and economic analysis are absolutely needed to support power plant viability

dea

Integrated Solar Combined Cycle Using Particles as Heat Transfer Fluid and Thermal Energy **Storage Medium for Flexible Electricity Dispatch**

THANKS FOR YOUR ATTENTION !

The research leading to these results has received funding from European Union's Horizon 2020 research and innovation program under grant agreement No 727762, Next-CSP project.

jose.gonzalez@imdea.org

i Mdea energy * Novel

Motivation

- Novel heat transfer fluid based on *Dense Particles Suspension* (**DPS**) to be used at central solar receiver and for direct Thermal Energy Storage (TES)
- Excellent thermophysical properties of DPS

DPS HTF advantages

- ✓ High Temperature (> 650 °C)
- \checkmark Cheap and abundant

- ✓ No freezing risk
- No hazardous

- High energy density
- ✓ High heat transfer coefficient (> 2,000 W/m² K)

Plant layout proposal: A high-efficiency solar thermal power plant using a dense particle suspension as the heat transfer fluid, J. Spelling, A. Gallo, M. Romero, J. González-Aguilar. **SolarPACES 2014**